Mahout实战 - (EPUB全文下载)

文件大小:2.99 mb。
文件格式:epub 格式。
书籍内容:

版权信息
书名:Mahout实战
作者:Sean Owen, Robin Anil, Ted Dunning, Ellen Friedman
译者:王斌, 韩冀中, 万吉
ISBN:978-7-115-34722-0
本书由北京图灵文化发展有限公司发行数字版。版权所有,侵权必究。
您购买的图灵电子书仅供您个人使用,未经授权,不得以任何方式复制和传播本书内容。
我们愿意相信读者具有这样的良知和觉悟,与我们共同保护知识产权。
如果购买者有侵权行为,我们可能对该用户实施包括但不限于关闭该帐号等维权措施,并可能追究法律责任。
目录
版权声明
前言
致谢
关于本书
路线图
代码约定及下载
多媒体资料
作者在线
16个语音讲解
关于封面
第1章 初识Mahout
1.1 Mahout的故事
1.2 Mahout的机器学习主题
1.2.1 推荐引擎
1.2.2 聚类
1.2.3 分类
1.3 利用Mahout和Hadoop处理大规模数据
1.4 安装Mahout
1.4.1 Java和IDE
1.4.2 安装Maven
1.4.3 安装Mahout
1.4.4 安装Hadoop
1.5 小结
第一部分 推荐
第2章 推荐系统
2.1 推荐的定义
2.2 运行第一个推荐引擎
2.2.1 创建输入
2.2.2 创建一个推荐程序
2.2.3 分析输出
2.3 评估一个推荐程序
2.3.1 训练数据与评分
2.3.2 运行RecommenderEvaluator
2.3.3 评估结果
2.4 评估查准率与查全率
2.4.1 运行RecommenderIRStatsEvaluator
2.4.2 查准率和查全率的问题
2.5 评估GroupLens数据集
2.5.1 提取推荐程序的输入
2.5.2 体验其他推荐程序
2.6 小结
第3章 推荐数据的表示
3.1 偏好数据的表示
3.1.1 Preference对象
3.1.2 PreferenceArray及其实现
3.1.3 改善聚合的性能
3.1.4 FastByIDMap和FastIDSet
3.2 内存级DataModel
3.2.1 GenericDataModel
3.2.2 基于文件的数据
3.2.3 可刷新组件
3.2.4 更新文件
3.2.5 基于数据库的数据
3.2.6 JDBC和MySQL
3.2.7 通过JNDI进行配置
3.2.8 利用程序进行配置
3.3 无偏好值的处理
3.3.1 何时忽略值
3.3.2 无偏好值时的内存级表示
3.3.3 选择兼容的实现
3.4 小结
第4章 进行推荐
4.1 理解基于用户的推荐
4.1.1 推荐何时会出错
4.1.2 推荐何时是正确的
4.2 探索基于用户的推荐程序
4.2.1 算法
4.2.2 基于GenericUserBasedRecommender实现算法
4.2.3 尝试GroupLens数据集
4.2.4 探究用户邻域
4.2.5 固定大小的邻域
4.2.6 基于阈值的邻域
4.3 探索相似性度量
4.3.1 基于皮尔逊相关系数的相似度
4.3.2 皮尔逊相关系数存在的问题
4.3.3 引入权重
4.3.4 基于欧氏距离定义相似度
4.3.5 采用余弦相似性度量
4.3.6 采用斯皮尔曼相关系数基于相对排名定义相似度
4.3.7 忽略偏好值基于谷本系数计算相似度
4.3.8 基于对数似然比更好地计算相似度
4.3.9 推测偏好值
4.4 基于物品的推荐
4.4.1 算法
4.4.2 探究基于物品的推荐程序
4.5 Slope-one推荐算法
4.5.1 算法
4.5.2 slope-one实践
4.5.3 DiffStorage和内存考虑
4.5.4 离线计算量的分配
4.6 最新以及试验性质的推荐算法
4.6.1 基于奇异值分解的推荐算法
4.6.2 基于线性插值物品的推荐算法
4.6.3 基于聚类的推荐算法
4.7 对比其他推荐算法
4.7.1 为Mahout引入基于内容的技术
4.7.2 深入理解基于内容的推荐算法
4.8 对比基于模型的推荐算法
4.9 小结
第5章 让推荐程序实用化
5.1 分析来自约会网站的样本数据
5.2 找到一个有效的推荐程序
5.2.1 基于用户的推荐程序
5.2.2 基于物品的推荐程序
5.2.3 slope-one推荐程序
5.2.4 评估查准率和查全率
5.2.5 评估性能
5.3 引入特定域的信息
5.3.1 采用一个定制的物品相似性度量
5.3.2 基于内容进行推荐
5.3.3 利用IDRescorer修改推荐结果
5.3.4 在IDRescorer中引入性别
5.3.5 封装一个定制的推荐程序
5.4 为匿名用户做推荐
5.4.1 利用PlusAnonymousUserDataModel处理临时用户
5.4.2 聚合匿名用户
5.5 创建一个支持Web访问的推荐程序
5.5.1 封装WAR文件
5.5.2 测试部署
5.6 更新和监控推荐程序
5.7 小结
第6章 分布式推荐
6.1 分析Wikipedia数据集
6.1.1 挑战规模
6.1.2 分布式计算的优缺点
6.2 设计一个基于物品的分布式推荐算法
6.2.1 构建共现矩阵
6.2.2 计算用户向量
6.2.3 生成推荐结果
6.2.4 解读结果
6.2.5 分布式实现
6.3 基于MapReduce实现分布式算法
6.3.1 MapReduce简介
6.3.2 向MapReduce转换:生成用户向量
6.3.3 向MapReduce转换:计算共现关系
6.3.4 向MapRduce转换:重新思考矩阵乘
6.3.5 向MapReduce转换:通过部分乘积计算矩阵乘
6.3.6 向MapReduce转换:形成推荐
6.4 在Hadoop上运行MapReduce
6.4.1 安装Hadoop
6.4.2 在Hadoop上执行推荐
6.4.3 配置mapper和reducer
6.5 伪分布式推荐程序
6.6 ............

书籍插图:
书籍《Mahout实战》 - 插图1
书籍《Mahout实战》 - 插图2

以上为书籍内容预览,如需阅读全文内容请下载EPUB源文件,祝您阅读愉快。

版权声明:书云(openelib.org)是世界上最大的在线非盈利图书馆之一,致力于让每个人都能便捷地了解我们的文明。我们尊重著作者的知识产权,如您认为书云侵犯了您的合法权益,请参考版权保护声明,通过邮件openelib@outlook.com联系我们,我们将及时处理您的合理请求。 数研咨询 流芳阁 研报之家 AI应用导航 研报之家
书云 Open E-Library » Mahout实战 - (EPUB全文下载)