几何原本 - (TXT全文下载)

文件大小:0.3mb。
书籍内容:

  钦定四库全书     子部六
  几何原本       天文算法类二【算书之属】提要
  【臣】等谨案几何原本六卷西洋欧几里得撰利玛窦译而徐光啓所笔受也欧几里得未详何时人其原书十三卷五百余题利玛窦之师丁氏为之集解又续补二卷于后共为十五卷今止六卷者徐光啓自谓译受是书此其最要者也其书每卷有界説有公论有设题界説者先取所用名目解説之公论者举其不可疑之理设题则据所欲言之理次第设之先其易者次其难者由浅而深由简而繁推之至于无以复加而后已又每题有法有解有论有系法言题用解述题意论则发明其所以然之理系则又有旁通者焉卷一论三角形卷二论线卷三论圆卷四论圆内外形卷五卷六俱论比例其余三角方圆边线面积体积比例变化相生之义无不曲折尽显纎防毕露光啓序称其穷方圆平直之情尽规矩准绳之用非虚语也且此为欧逻巴算学専书前作后述不絶于世至欧几里得而为是书盖亦集诸家之成故自始至终毫无疵纇加以光啓反覆推阐其文句尤为明显以是弁冕西术不为过矣乾隆四十六年十二月恭校上
  总纂官【臣】纪昀【臣】陆锡熊【臣】孙士毅
  总 校 官 【臣】 陆 费 墀

  几何原本序
  唐虞之世自羲和治厯暨司后稷工虞典乐五官者非度数不为功周官六艺数与防一焉而五艺者不以度数从事亦不得工也襄旷之于音般墨之于械岂有他谬巧哉精于用法尔已故尝谓三代而上为此业者盛有元元本本师曹习之学而毕丧于祖龙之汉以来多任意揣摩如盲人射的虚发无效或依儗形似如持萤烛象得首失尾至于今而此道尽废有不得不废者矣几何原本者度数之宗所以穷方圆平直之情尽规矩准绳之用也利先生从少年时论道之暇留意艺学且此业在波中所谓师曹习者其师丁氏又絶代名家也以故极精其说而与不佞游久讲谈余晷时时及之因请其象数诸书更以华文独谓此书未译则他书俱不可得论遂共翻其要约六卷既平业而复之由显入微从疑得信盖不用为用众用所基真可谓万象之形囿百家之学海虽实未竟然以当他书既可得而论矣私心自谓不意古学废絶二千年后顿获补缀唐虞三代之阙典遗义其裨益当世定复不小因偕二三同志刻而传之先生曰是书也以当百家之用度几有羲和般墨其人乎犹其小者有大用于此将以习人之灵才令细而确也余以为小用大用实在其人如邓林伐材栋梁榱桷恣所取之耳顾惟先生之学略有三种大者修身事天小者格物穷理物理之一端别为象数一一皆精实典要洞无可疑其分解擘析亦能使人无疑而余乃亟传其小者趋欲先其易信使人绎其文想见其意理而知先生之学可信不疑大防如是则是书之为用更大矣他所说几何诸家借此为用略具其自叙中不备论吴淞徐光启书

  钦定四库全书
  几何原本卷一之首
  西洋利玛窦译
  界说三十六则
  凡造论先当分别解说论中所用名目故曰界说凡厯法地理乐律算章技艺工巧诸事有度有数者皆依頼十府中几何府属凡论几何先从一防始自防引之为线线展为靣靣积为体是名三度第一界
  防者无分
  无长短广狭厚薄 如下图【凡图十干为识干尽用十二支支尽用八卦八音】
  【甲】
  第二界
  线有长无广
  试如一平靣光照之有光无光之间不容一物是线也真平真圆相遇其相遇处止有一防行则止有一线

  线有直有曲
  第三界
  线之界是防【凡线有界者两界必是防】
  第四界
  直线止有两端两端之间上下更无一防
  两防之间至径者直线也稍曲则绕而长矣
  直线之中防能遮两界
  凡量逺近皆用直线
  甲乙丙是直线甲丁丙甲戊丙甲己丙皆是曲线
  第五界
  靣者止有长有广
  体所见为靣
  凡体之影极似于靣【无厚之极】
  想一线横行所留之迹即成靣也

  第六界
  靣之界是线
  第七界
  平靣一靣平在界之内
  平靣中间线能遮两界
  平靣者诸方皆作直线
  试如一方靣用一直绳施于 角绕靣运转不碍于空是平靣也
  若曲靣者则中间线不遮两界
  第八界
  平角者两直线于平靣纵横相遇交接处

  凡言甲乙丙角皆指平角
  如上甲乙乙丙二线平行相遇不能作角

  如上甲乙乙丙二线虽相遇不作平角为是曲线
  所谓角止是两线相遇不以线之大小较论
  第九界
  直线相遇作角为直线角
  平地两直线相遇为直线角本书中所论止是直线角但作角有三等今附着于此一直线角二曲线角三杂线角 如下六图

  第十界
  直线垂于横直线之上若两角等必两成直角而直线下垂者谓之横线之垂线
  量法常用两直角及垂线垂线加于横线之上必不作锐角及钝角
  若甲乙线至丙丁上则乙之左右作两角相等为直角而甲乙为垂线
  若甲乙为横线则丙丁又为甲乙之垂线何者丙乙与甲乙相遇虽止一直角然甲线若垂下过乙则丙线上下定成两直角所以丙乙亦为甲乙之垂线【如今用短尺一纵一横互相为直线互相为垂线】
  凡直线上有两角相连是相等者定俱直角中间线为垂线
  反用之若是直角则两线定俱是垂线
  第十一界
  凡角大于直角为钝角
  如甲乙丙角与甲乙丁角不等而甲乙丙大于甲乙丁则甲乙丙为钝角
  第十二界
  凡角小于直角为锐角
  如前图甲乙丁是
  通上三界论之直角一而己钝角锐角其大小不等乃至无数
  是后凡指言角者俱用三字为识其第二字即所指角也 如前图甲乙丙三字第二乙字即所指钝角若言甲乙丁即第二乙字是所指锐角
  第十三界
  界者一物之终始
  今所论有三界防为线之界线为靣之界靣为体之界体不可为界
  第十四界
  或在一界或在多界之间为形
  一界之形如平圆立圆等物多界之形如平方立方及平立三角六八角等物 图见后卷
  第十五界
  圜者一形于平地居一界之间自界至中心作直线俱等
  若甲乙丙为圜丁为中心则自甲至丁与乙至丁丙至丁其线俱等
  外圆线为圜之界内形为圜
  一说圜是一形乃一线屈转一周复于元处所作如上图甲丁线转至乙丁乙丁转至丙丁丙丁又至甲丁复元处其中形即成圜
  第十六界
  圜之中处为圜心
  第十七界
  自圜之一界作一直线过中心至他界为圜径径分圜两平分
  甲丁乙戊圜自甲至乙过丙心作一直线为圜径
  第十八界
  径线与半圜之界所作形为半圜
  第十九界
  在直线界中之形为直线形
  第二十界
  在三直线界中之形为三邉形
  第二十一界
  在四直线界中之形为 ............

以上为书籍内容预览,如需阅读全文内容请下载TXT文件,祝您阅读愉快。

版权声明:书云(openelib.org)是世界上最大的在线非盈利图书馆之一,致力于让每个人都能便捷地了解我们的文明。我们尊重著作者的知识产权,如您认为书云侵犯了您的合法权益,请参考版权保护声明,通过邮件openelib@outlook.com联系我们,我们将及时处理您的合理请求。 数研咨询 流芳阁 研报之家 AI应用导航 研报之家
书云 Open E-Library » 几何原本 - (TXT全文下载)