10堂极简概率课 - (EPUB全文下载)

文件大小:6.21 mb。
文件格式:epub 格式。
书籍内容:

目录
献词
前言
第1课 概率是可以测度的
概率测度的开始
帕斯卡和费马
惠更斯
伯努利
小结
附录1 帕斯卡和费马
附录2 抛硬币的物理学原理
附录3 巧合与生日问题
第2课 相关性判断就是概率
部分Ⅰ:赌博与判断概率
部分Ⅱ:效用与判断概率
小结
附录1 条件赌注的相关性
附录2 概率运动学
第3课 概率心理学不同于概率逻辑学
启发法和偏见
框架
小结
附录1 埃尔斯伯格:有序性还是独立性?
附录2 动态一致性与阿莱
第4课 频率与概率之间有什么关系?
雅各布·伯努利与弱大数定律
伯努利骗局与频率主义
伯努利骗局与假设检验
频率学派的中坚力量
对理想化方法的再思考
小结
第5课 如何用数学方法解决概率问题?
在数学与现实之间Ⅰ
有限集的概率
集合的长度与概率
希尔伯特的第6个问题
柯尔莫哥洛夫的贡献
把概率论视为数学的一个分支
把条件概率视为随机变量
从有限维到无限维
在数学和现实之间Ⅱ
随机选择的整数?数学的旁白
柯尔莫哥洛夫对概率空间的有穷性的看法
小结
附录1 复杂集合的测度
附录2 不可测集
第6课 贝叶斯定理如何改变了世界?
贝叶斯vs休谟
贝叶斯的概率研究
反演问题与台球桌
拉普拉斯的玩笑
广义的拉普拉斯定律
相容性
为什么公开发表的研究结果大多是错的?
贝叶斯、伯努利和频率
改变世界
小结
附录 贝叶斯关于概率和统计学的思考
第7课 菲尼蒂定理与可交换概率
菲尼蒂的论著
有限可交换序列
菲尼蒂定理与一般可观测量
菲尼蒂定理与正态分布
马尔可夫链
部分可交换性
小结
附录1 遍历理论——菲尼蒂定理的推广
附录2 菲尼蒂可交换定理
第8课 如何用图灵机生成随机序列?
随机数生成器
随机算法理论
可计算性
马丁–洛夫随机序列
随机性的变化
小结
第9课 世界的本质是什么?
玻尔兹曼
概率、频率和遍历性
冯·诺依曼和伯克霍夫的遍历性研究
庞加莱
遍历性的层次结构
玻尔兹曼归来
量子力学
非定域性
量子概率归来
量子混沌
小结
附录 量子形而上学:窥视潘多拉的盒子
第10课 如何用概率论解答休谟问题?
休谟
康德
波普尔
归纳怀疑论的不同等级
贝叶斯–拉普拉斯
无知如何量化?
概率是否存在?
如果置信度不可交换,会怎么样?
那些用来描述世界的谓词呢?
如何看待不确定性证据呢?
小结
附录 概率辅导课
符号:把事情记录下来
案例:非传递性悖论
基本事实:游戏规则
随机变量和期望
条件期望和鞅
案例:波利亚的罐子
从离散到连续再到更大空间
计算机登场!
致谢
献词
谨以此书纪念“钻石吉姆”理查德·杰弗里(Richard Jeffrey)
他是我们的好朋友和一位真正的哲学家。
前言
这本书是由我们在斯坦福大学合作教授了约10年的一门课程衍生而来的。这是一门大型的混合性课程,听课的人是本科生或研究生,他们分别来自哲学、统计学和一些交叉学科。随着课程的不断发展,我们越来越相信它的内容应该可以吸引更多的听众。学习这门课的一个先决条件,就是接触过一门概率论或统计学的课程,这本书的读者同样需要满足这个条件。但是,考虑到某些读者可能是在很久以前学过这类课程,我们在书中以附录的形式,对概率论进行了一次简要的复习。
这本书涉及的内容包括历史、概率和哲学。我们不仅介绍了概率论发展过程中的一些伟大思想及其历史,还致力于探索这些思想的哲学意义。一位阅读过本书初稿的读者抱怨说,读到最后,他仍然不了解我们关于概率的哲学观点,原因或许是我们过于中立。这个问题现在已经解决了,你会发现我们是彻头彻尾的贝叶斯学派,是贝叶斯(Thomas Bayes)、拉普拉斯(Pierre-Simon Laplace)、拉姆齐(Frank Ramsey)和菲尼蒂(Bruno de Finetti)的信徒。有人认为贝叶斯学派是与频率学派相对立的,而我们并不否认频率的重要性,或者讨论客观概率的价值。不仅如此,我们还会在合理的置信度框架内统一考虑这些问题。
在这本书的开头,我们与先驱者一起思考,涉及的工具很简单。但到了后半部分,我们将回到当下,不可避免地会接触到一些技术性细节。为了保证行文简洁流畅,我们将把某些细节内容放到附录中,大家可以根据需要查阅。我们还做了大量注释,以方便读者深入挖掘自己感兴趣的内容。在这本书的最后,我们列出了一份参考书目。此外,脚注也给出了较为详细的解释。
佩尔西·戴康尼斯
布赖恩·斯科姆斯
第1课 概率是可以测度的
吉罗拉莫·卡尔达诺(Gerolamo Cardano)
要搞清楚一门学科的本质,认真研究该学科的开创者的想法是一条可行的路径。事实上,某些基础性哲学问题从一开始就是显而易见的。关于概率,我们的
第1堂课要介绍的第一个伟大思想是:概率是可以测度的。这个观点的形成时间是16—17世纪,过程为何如此漫长,这个问题至今仍然是一个谜。希腊神话中有命运女神堤喀(Tyche);德谟克利特(Democritus)及其追随者假设,构建宇宙的所有原子都会受到某种物质偶然性的影响;卢克莱修(Lucretius)在《物性论》(De
Rerum Natura)中指出,这种偶然性就是原子的偏离;古埃及人和古巴比伦人学会
了用指关节骨或骰子玩概率游戏,到了罗马时期,这种游戏流行开来,士兵们通过抽签决定基督斗篷的归属。后来,古希腊学园派怀疑论者将概率视为人生的指南。( echoed by Cicero in De Natura.)不过,这些时期似乎都没有出现有关概率的定量理论。( A superb history of early probability is in James Franklin’s The Science of Conjecture: Ev-idence and Probability before Pascal (Baltimore: Johns Hopkins University Press, 2002). Franklin examines every scrap of evidence we have, from the T ............

书籍插图:
书籍《10堂极简概率课》 - 插图1
书籍《10堂极简概率课》 - 插图2

以上为书籍内容预览,如需阅读全文内容请下载EPUB源文件,祝您阅读愉快。

版权声明:书云(openelib.org)是世界上最大的在线非盈利图书馆之一,致力于让每个人都能便捷地了解我们的文明。我们尊重著作者的知识产权,如您认为书云侵犯了您的合法权益,请参考版权保护声明,通过邮件openelib@outlook.com联系我们,我们将及时处理您的合理请求。 数研咨询 流芳阁 研报之家 AI应用导航 研报之家
书云 Open E-Library » 10堂极简概率课 - (EPUB全文下载)