深度学习:Java语言实现 - (EPUB全文下载)
文件大小:0.53 mb。
文件格式:epub 格式。
书籍内容:
智能系统与技术丛书
深度学习:Java语言实现
Java Deep Learning Essentials
(日)巣笼悠辅 著
陈澎 王磊 陆明 译
ISBN:978-7-111-57298-5
本书纸版由机械工业出版社于2017年出版,电子版由华章分社(北京华章图文信息有限公司,北京奥维博世图书发行有限公司)全球范围内制作与发行。
版权所有,侵权必究
客服热线:+ 86-10-68995265
客服信箱:service@bbbvip.com
官方网址:www.hzmedia.com.cn
新浪微博 @华章数媒
微信公众号 华章电子书(微信号:hzebook)
目录
译者序
前言
第1章 深度学习概述
1.1 人工智能的变迁
1.1.1 人工智能的定义
1.1.2 人工智能曾经的辉煌
1.1.3 机器学习的演化
1.1.4 机器学习的局限性
1.2 人与机器的区分因素
1.3 人工智能与深度学习
1.4 小结
第2章 机器学习算法——为深度学习做准备
2.1 入门
2.2 机器学习中的训练需求
2.3 监督学习和无监督学习
2.3.1 支持向量机
2.3.2 隐马尔可夫模型
2.3.3 神经网络
2.3.4 逻辑回归
2.3.5 增强学习
2.4 机器学习应用流程
2.5 神经网络的理论和算法
2.5.1 单层感知器
2.5.2 逻辑回归
2.5.3 多类逻辑回归
2.5.4 多层感知器
2.6 小结
第3章 深度信念网络与栈式去噪自编码器
3.1 神经网络的没落
3.2 神经网络的复兴
3.2.1 深度学习的进化——突破是什么
3.2.2 预训练的深度学习
3.3 深度学习算法
3.3.1 限制玻尔兹曼机
3.3.2 深度信念网络
3.3.3 去噪自编码器
3.3.4 栈式去噪自编码器
3.4 小结
第4章 dropout和卷积神经网络
4.1 没有预训练的深度学习算法
4.2 dropout
4.3 卷积神经网络
4.3.1 卷积
4.3.2 池化
4.3.3 公式和实现
4.4 小结
第5章 探索Java深度学习库——DL4J、ND4J以及其他
5.1 从零实现与使用库/框架
5.2 DL4J和ND4J的介绍
5.3 使用ND4J实现
5.4 使用DL4J实现
5.4.1 设置
5.4.2 构建
5.4.3 CNNMnistExample.java/LenetMnistExample.java
5.4.4 学习速率的优化
5.5 小结
第6章 实践应用——递归神经网络等
6.1 深度学习热点
6.1.1 图像识别
6.1.2 自然语言处理
6.2 深度学习的挑战
6.3 最大化深度学习概率和能力的方法
6.3.1 面向领域的方法
6.3.2 面向分解的方法
6.3.3 面向输出的方法
6.4 小结
第7章 其他重要的深度学习库
7.1 Theano
7.2 TensorFlow
7.3 Caffe
7.4 小结
第8章 未来展望
8.1 深度学习的爆炸新闻
8.2 下一步的展望
8.3 对深度学习有用的新闻资源
8.4 小结
译者序
本书是一本实战型的深度学习和机器学习宝典,十分适合Java的深度学习入门者。本书涵盖了深度学习的主要成熟算法,一步步地剖析算法背后的数学原理,并提供大量通俗易懂的代码加以说明。同时,为了能更好地指导实践,作者生动地阐述了很多宝贵的工程经验和技术直觉。最后,本书介绍了该领域最新的研究和应用成果,还包括一些实用的网络资源及研究方法。总之,本书值得深度学习爱好者细细品味。
最令人吃惊的是,本书作者Yusuke Sugomori竟然是一位十分年轻的“老司机”,拥有丰富的工程经验。从本书内容中,我们能隐约领悟到作者探索深度学习的捷径,就是“敢于实践,善于实践,快速实践!”。因此,我们也建议读者从最基本的部分就边学边做,不断深入理解深度学习的内涵。
本书的译者分工如下,陆明负责第1、2、6章,王磊负责第3、4、5章,陈澎负责前言、附录及第7、8章,并负责全书的审校工作。感谢机械工业出版社的编辑给予的帮助!
特别感谢我即将出生的孩子,一直支持我的妻子和父母,感谢合作译者陆明和王磊的家人!
“轻鞭一挥芳径去,漫闻花儿断续长”,我们有理由对人工智能的未来怀有更无限的憧憬!
陈澎
2017年3月于北京
前言
目前,人工智能技术举世瞩目,深度学习也引起人们广泛关注。在实践上,深度学习推动了人工智能革命性进步,其相关算法已经应用到众多领域。然而,这种“革命性”的技术,常被认为非常复杂,让人敬而远之。而实际上,深度学习的理论和概念并不晦涩难懂。本书将一步步地介绍相关理论和公式,并引导读者从零开始完成编码实现。
本书内容
第1章:介绍深度学习的演化过程。
第2章:介绍与深度学习相关的机器学习算法。
第3章:介绍深度信念网络与栈式去噪自编码器。
第4章:集中介绍dropout和CNN的相关算法。
第5章:重点介绍深度学习库DL4J及实践经验。
第6章:面向实战,实践深度学习算法和相关Java库的工程开发。
第7章:广泛介绍Teano、TensorFlow和Caffe等深度学习框架。
第8章:介绍深度学习的最新动态及相关资源。
本书的使用要求
Java8或以上(支持lambda表达式),DeepLearning4J0.4或以上版本的Java库。
目标读者
本书是为那些想了解深度学习算法并期望应用到实践中的Java程序员而设计的。内容涵盖机器学习和深度学习的核心概念和方法,但并不要求读者具有机器学习经验;同时,本书用极简的代码实现深度学习算法,这对一般Java程序员在语言技能和深度学习实现上有很大帮助。
下载示例代码
读者可使用在http://www.packtpub.com
注册的账户下载本书的示例代码。如果你不是在官网购买的此书,可以访问http://www.packtpub.com/support
注册,代码文件会直接通过电子邮件发送给你。
你可根据以下步骤下载代码文件:
(1)使用你的电子 ............
书籍插图:
以上为书籍内容预览,如需阅读全文内容请下载EPUB源文件,祝您阅读愉快。
书云 Open E-Library » 深度学习:Java语言实现 - (EPUB全文下载)