数据科学实战 - (EPUB全文下载)
文件大小:3.95 mb。
文件格式:epub 格式。
书籍内容:
版权信息
书名:数据科学实战
作者:Rachel Schutt , Cath O'Neil
译者:冯凌秉 王群锋
ISBN:978-1-449-35865-5
本书由北京图灵文化发展有限公司发行数字版。版权所有,侵权必究。
您购买的图灵电子书仅供您个人使用,未经授权,不得以任何方式复制和传播本书内容。
我们愿意相信读者具有这样的良知和觉悟,与我们共同保护知识产权。
如果购买者有侵权行为,我们可能对该用户实施包括但不限于关闭该帐号等维权措施,并可能追究法律责任。
图灵社区会员 ptpress(libowen@ptpress.com.cn) 专享 尊重版权
版权声明
O'Reilly Media, Inc.介绍
业界评论
作者介绍
关于封面图
前言
初衷
课程的起源
本书的起源
本书内容
组织结构
阅读须知
书中的代码
目标读者
基础知识要求
补充阅读
关于本书其他贡献者
排版约定
使用代码示例
Safari® Books Online
联系我们
致谢
第 1 章 简介:什么是数据科学
1.1 大数据和数据科学的喧嚣
1.2 冲出迷雾
1.3 为什么是现在
数据化
1.4 数据科学的现状和历史
数据科学的职位
1.5 数据科学的知识结构
1.6 思维实验: 元定义
1.7 什么是数据科学家
1.7.1 学术界对数据科学家的定义
1.7.2 工业界对数据科学家的定义
第 2 章 统计推断、探索性数据分析和数据科学工作流程
2.1 大数据时代的统计学思考
2.1.1 统计推断
2.1.2 总体和样本
2.1.3 大数据的总体和样本
2.1.4 大数据意味着大胆的假设
2.1.5 建模
2.2 探索性数据分析
2.2.1 探索性数据分析的哲学
2.2.2 练习:探索性数据分析
2.3 数据科学的工作流程
数据科学家在数据科学工作流程中的角色
2.4 思维实验:如何模拟混沌
2.5 案例学习:RealDirect
2.5.1 RealDirect是如何赚钱的
2.5.2 练一练:RealDirect公司的数据策略
第 3 章 算法
3.1 机器学习算法
3.2 三大基本算法
3.2.1 线性回归模型
3.2.2 k近邻模型(k-NN)
3.2.3 k均值算法
3.3 练习:机器学习算法基础
答案
3.4 总结
3.5 思维实验:关于统计学家的自动化
第 4 章 垃圾邮件过滤器、朴素贝叶斯与数据清理
4.1 思维实验:从实例中学习
4.1.1 线性回归为何不适用
4.1.2 k近邻效果如何
4.2 朴素贝叶斯模型
4.2.1 贝叶斯法则
4.2.2 个别单词的过滤器
4.2.3 直通朴素贝叶斯
4.3 拉普拉斯平滑法
4.4 对比朴素贝叶斯和k 近邻
4.5 Bash代码示例
4.6 网页抓取:API和其他工具
4.7 Jake的练习题:文章分类问题中的朴素贝叶斯模型
使用《纽约时报》的API: R代码示例
第 5 章 逻辑回归
5.1 思维实验
5.2 分类器
5.2.1 运行时间
5.2.2 你自己
5.2.3 模型的可解释性
5.2.4 可扩展性
5.3 逻辑回归:一个来自M6D的真实案例研究
5.3.1 点击模型
5.3.2 模型背后
5.3.3 和的参数估计
5.3.4 牛顿法
5.3.5 随机梯度下降法
5.3.6 操练
5.3.7 模型评价
5.4 练习题
示例R代码
第 6 章 时间戳数据与金融建模
6.1 Kyle Teague与GetGlue公司
6.2 时间戳
6.2.1 探索性数据分析(EDA)
6.2.2 指标和新变量
6.2.3 下一步怎么做
6.3 轮到Cathy O'Neill了
6.4 思维实验
6.5 金融建模
6.5.1 样本期内外以及因果关系
6.5.2 金融数据处理
6.5.3 对数收益率
6.5.4 实例:标准普尔指数
6.5.5 如何衡量波动率
6.5.6 指数平滑法
6.5.7 金融模型的反馈
6.5.8 聊聊回归模型
6.5.9 先验信息量
6.5.10 一个小例子
6.6 练习:GetGlue提供的时间戳数据
练习:金融建模
第 7 章 从数据到结论
7.1 William Cukierski
7.1.1 背景介绍:数据科学竞赛
7.1.2 背景介绍:众包模式
7.2 Kaggle模式
7.2.1 Kaggle的参赛者
7.2.2 Kaggle的客户
7.3 思维实验:关于作业自动评分系统
7.4 特征选择
7.4.1 例子:留住用户
7.4.2 过滤型
7.4.3 包装型
7.4.4 决策树与嵌入型变量选择
7.4.5 熵
7.4.6 决策树算法
7.4.7 如何在决策树模型中处理连续性变量
7.4.8 随机森林
7.4.9 用户黏性:模型的预测能力与可解释性
7.5 David Huffaker:谷歌社会学研究的新方法
7.5.1 从描述性统计到预测模型
7.5.2 谷歌的社交研究
7.5.3 隐私保护
7.5.4 思维实验:如何消除用户的顾虑
第 8 章 构建面向大量用户的推荐引擎
8.1 一个真实的推荐引擎
8.1.1 最近邻算法回顾
8.1.2 最近邻模型的已知问题
8.1.3 超越近邻模型:基于机器学习的分类模型
8.1.4 高维度问题
8.1.5 奇异值分解(SVD)
8.1.6 关于SVD的重要特性
8.1.7 主成分分析(PCA)
8.1.8 交替最小二乘法
8.1.9 固定矩阵V,更新矩阵U
8.1.10 关于这些算法的一点思考
8.2 思维实验:如何过滤模型中的泡沫
8.3 练习:搭建自己的推荐系统
Python示例代码
第 9 章 数据可视化与欺诈侦测
9.1 数据可视化的历史
9.1.1 Gabriel Tarde
9.1.2 Mark的思维实验
9.2 到底什么是数据科学
9.2.1 Processing
9.2.2 Franco Moretti
9.3 一个数据可视化的方案实例
9.4 Mark的数据可视化项目
9.4.1 《纽约时报》大厅 ............
书籍插图:
以上为书籍内容预览,如需阅读全文内容请下载EPUB源文件,祝您阅读愉快。
书云 Open E-Library » 数据科学实战 - (EPUB全文下载)