九章算术 - (EPUB全文下载)
文件大小:0.29 mb。
文件格式:epub 格式。
书籍内容:
九章算术
汉·张苍
目 录
九章算术注序
卷一
方田〔以御田畴界域〕
约分
合分
减分
课分
平分
经分
乘分
大广田
卷二
粟米〔以御交质变易〕
卷三
衰分〔以御贵贱禀税〕
卷四
少广〔以御积幂方圆〕
开方
卷五
商功〔以御功程积实〕
卷六
均输〔以御远近劳费〕
卷七
盈不足〔以御隐杂互见〕
卷八
方程〔以御错糅正负〕
卷九
句股〔以御高深广远〕
九章算术注序
刘徽
昔在庖牺氏始画八卦,以通神明之德,以类万物之情,作九九之数,以合六爻之变。暨于黄帝神而化之,引而伸之,于是建历纪,协律吕,用稽道原,然后两仪四象精微之气可得而效焉。记称隶首作数,其详未之闻也。按周公制礼而有九数,九数之流,则《九章》是矣。往者暴秦焚书,经术散坏。自时厥后,汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论者多近语也。徽幼习《九章》,长再详览。观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意。是以敢竭顽鲁,采其所见,为之作注。事类相推,各有攸归,故枝条虽分而同本榦知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。且算在六艺,古者以宾兴贤能,教习国子;虽曰九数,其能穷纤入微,探测无方;至于以法相传,亦犹规矩度量可得而共,非特难为也。当今好之者寡,故世虽多通才达学,而未必能综于此耳。《周官·大司徒》职,夏至日中立八尺之表。其景尺有五寸,谓之地中。说云,南戴日下万五千里。夫云尔者,以术推之。案:《九章》立四表望远及因木望山之术,皆端旁互见,无有超邈若斯之类。然则苍等为术犹未足以博尽群数也。徽寻九数有重差之名,原其指趣乃所以施于此也。凡望极高、测绝深而兼知其远者必用重差、句股,则必以重差为率,故曰重差也。立两表于洛阳之城,令高八尺,南北各尽平地。同日度其正中之时。以景差为法,表高乘表间为实,实如法而一。所得加表高,即日去地也。以南表之景乘表间为实,实如法而一,即为从南表至南戴日下也。以南戴日下及日去地为句、股,为之求弦,即日去人也。以径寸之筒南望日,日满筒空,则定筒之长短以为股率,以筒径为句率,日去人之数为大股,大股之句即日径也。虽夫圆穹之象犹曰可度,又况泰山之高与江海之广哉。徽以为今之史籍且略举天地之物,考论厥数,载之于志,以阐世术之美,辄造《重差》,并为注解,以究古人之意,缀于句股之下。度高者重表,测深者累矩,孤离者三望,离而又旁求者四望。触类而长之,则虽幽遐诡伏,靡所不入,博物君子,详而览焉。
卷一
方田〔以御田畴界域〕
今有田广十五步,从十六步。问为田几何?答曰:一亩。
又有田广十二步,从十四步。问为田几何?答曰:一百六十八步。
〔图:从十四,广十二。〕
方田术曰:广从步数相乘得积步。
〔此积谓田幂。凡广从相乘谓之幂。
淳风等按:经云广从相乘得积步,注云广从相乘谓之幂。观斯注意,积幂义同。以理推之,固当不尔。何则?幂是方面单布之名,积乃众数聚居之称。循名责实,二者全殊。虽欲同之,窃恐不可。今以凡言幂者据广从之一方;其言积者举众步之都数。经云相乘得积步,即是都数之明文。注云谓之为幂,全乖积步之本意。此注前云积为田幂,于理得通。复云谓之为幂,繁而不当。今者注释,存善去非,略为料简,遗诸后学。〕
以亩法二百四十步除之,即亩数。百亩为一顷。
〔淳风等按:此为篇端,故特举顷、亩二法。余术不复言者,从此可知。一亩之田,广十五步,从而疏之,令为十五行,则每行广一步而从十六步。又横而截之,令为十六行,则每行广一步而从十五步。此即从疏横截之步,各自为方,凡有二百四十步。一亩之地,步数正同。以此言之,则广从相乘得积步,验矣。二百四十步者,亩法也;百亩者,顷法也。故以除之,即得。〕
今有田广一里,从一里。问为田几何?答曰:三顷七十五亩。
又有田广二里,从三里。问为田几何?答曰:二十二顷五十亩。
里田术曰:广从里数相乘得积里。以三百七十五乘之,即亩数。
〔按:此术广从里数相乘得积里。方里之中有三顷七十五亩,故以乘之,即得亩数也。〕
今有十八分之十二,问约之得几何?答曰:三分之二。
又有九十一分之四十九,问约之得几何?答曰:十三分之七。
约分
〔按:约分者,物之数量,不可悉全,必以分言之;分之为数,繁则难用。设有四分之二者,繁而言之,亦可为八分之四;约而言之,则二分之一也,虽则异辞,至于为数,亦同归尔。法实相推,动有参差,故为术者先治诸分。〕
术曰:可半者半之;不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。
〔等数约之,即除也。其所以相减者,皆等数之重叠,故以等数约之。〕
今有三分之一,五分之二,问合之得几何?答曰:十五分之十一。
又有三分之二,七分之四,九分之五,问合之得几何?答曰:得一、六十三分之五十。
又有二分之一,三分之二,四分之三,五分之四,问合之得几何?答曰:得二、六十分之四十三。
合分
〔淳风等按:合分知,数非一端,分无定准,诸分子杂互,群母参差。粗细既殊,理难从一,故齐其众分,同其群母,令可相并,故曰合分。〕
术曰:母互乘子,并以为实。母相乘为法。
〔母互乘子。约而言之者,其分粗;繁而言之者,其分细。虽则粗细有殊,然其实一也。众分错杂,非细不会。乘而散之,所以通之。通之则可并也。凡母互乘子谓之齐,群母相乘谓之同。同者,相与通同,共一母也;齐者,子与母齐,势不可失本数也。方以类聚,物以群分。数同类者无远;数异类者无近。远而通体知,虽异位而相从也;近而殊形知,虽同列而相违也。然则齐同之术要矣:错综度数,动之斯谐,其犹佩觿解结,无往而不理焉。乘以散之,约以聚之,齐同以通之,此其算之纲纪乎?其一术者,可令母除为率,率乘子为齐。〕
实如法而一。不满法者,以法命之。
〔今欲求其实,故齐其子,又同其母,令如母而一。其余以等数约之,即得知,所谓同法为母,实余为子,皆从此例。〕
其母同者,直相从之。
今有九分之八,减其五分之一,问余几何?答曰:四十五分之三十一。
又有四分之三,减其三分之一,问余几何?答曰:十二分之五。 ............
书籍插图:
以上为书籍内容预览,如需阅读全文内容请下载EPUB源文件,祝您阅读愉快。
书云 Open E-Library » 九章算术 - (EPUB全文下载)