深度学习入门:基于Python的理论与实现 - (EPUB全文下载)
文件大小:5.21 mb。
文件格式:epub 格式。
书籍内容:
版权信息
书名:深度学习入门:基于Python的理论与实现
作者:[日] 斋藤康毅
译者:陆宇杰
ISBN:978-7-115-48558-8
本书由北京图灵文化发展有限公司发行数字版。版权所有,侵权必究。
您购买的图灵电子书仅供您个人使用,未经授权,不得以任何方式复制和传播本书内容。
我们愿意相信读者具有这样的良知和觉悟,与我们共同保护知识产权。
如果购买者有侵权行为,我们可能对该用户实施包括但不限于关闭该帐号等维权措施,并可能追究法律责任。
图灵社区会员 dome(blueorea1127@live.cn) 专享 尊重版权
版权声明
O'Reilly Media, Inc.介绍
业界评论
译者序
前言
本书的理念
本书面向的读者
本书不面向的读者
本书的阅读方法
让我们开始吧
表述规则
致谢
第 1 章 Python 入门
1.1 Python是什么
1.2 Python的安装
1.2.1 Python版本
1.2.2 使用的外部库
1.2.3 Anaconda发行版
1.3 Python解释器
1.3.1 算术计算
1.3.2 数据类型
1.3.3 变量
1.3.4 列表
1.3.5 字典
1.3.6 布尔型
1.3.7 if 语句
1.3.8 for 语句
1.3.9 函数
1.4 Python脚本文件
1.4.1 保存为文件
1.4.2 类
1.5 NumPy
1.5.1 导入 NumPy
1.5.2 生成 NumPy 数组
1.5.3 NumPy 的算术运算
1.5.4 NumPy 的 N 维数组
1.5.5 广播
1.5.6 访问元素
1.6 Matplotlib
1.6.1 绘制简单图形
1.6.2 pyplot 的功能
1.6.3 显示图像
1.7 小结
第 2 章 感知机
2.1 感知机是什么
2.2 简单逻辑电路
2.2.1 与门
2.2.2 与非门和或门
2.3 感知机的实现
2.3.1 简单的实现
2.3.2 导入权重和偏置
2.3.3 使用权重和偏置的实现
2.4 感知机的局限性
2.4.1 异或门
2.4.2 线性和非线性
2.5 多层感知机
2.5.1 已有门电路的组合
2.5.2 异或门的实现
2.6 从与非门到计算机
2.7 小结
第 3 章 神经网络
3.1 从感知机到神经网络
3.1.1 神经网络的例子
3.1.2 复习感知机
3.1.3 激活函数登场
3.2 激活函数
3.2.1 sigmoid 函数
3.2.2 阶跃函数的实现
3.2.3 阶跃函数的图形
3.2.4 sigmoid 函数的实现
3.2.5 sigmoid 函数和阶跃函数的比较
3.2.6 非线性函数
3.2.7 ReLU函数
3.3 多维数组的运算
3.3.1 多维数组
3.3.2 矩阵乘法
3.3.3 神经网络的内积
3.4 3 层神经网络的实现
3.4.1 符号确认
3.4.2 各层间信号传递的实现
3.4.3 代码实现小结
3.5 输出层的设计
3.5.1 恒等函数和 softmax 函数
3.5.2 实现 softmax 函数时的注意事项
3.5.3 softmax 函数的特征
3.5.4 输出层的神经元数量
3.6 手写数字识别
3.6.1 MNIST 数据集
3.6.2 神经网络的推理处理
3.6.3 批处理
3.7 小结
第 4 章 神经网络的学习
4.1 从数据中学习
4.1.1 数据驱动
4.1.2 训练数据和测试数据
4.2 损失函数
4.2.1 均方误差
4.2.2 交叉熵误差
4.2.3 mini-batch 学习
4.2.4 mini-batch 版交叉熵误差的实现
4.2.5 为何要设定损失函数
4.3 数值微分
4.3.1 导数
4.3.2 数值微分的例子
4.3.3 偏导数
4.4 梯度
4.4.1 梯度法
4.4.2 神经网络的梯度
4.5 学习算法的实现
4.5.1 2 层神经网络的类
4.5.2 mini-batch 的实现
4.5.3 基于测试数据的评价
4.6 小结
第 5 章 误差反向传播法
5.1 计算图
5.1.1 用计算图求解
5.1.2 局部计算
5.1.3 为何用计算图解题
5.2 链式法则
5.2.1 计算图的反向传播
5.2.2 什么是链式法则
5.2.3 链式法则和计算图
5.3 反向传播
5.3.1 加法节点的反向传播
5.3.2 乘法节点的反向传播
5.3.3 苹果的例子
5.4 简单层的实现
5.4.1 乘法层的实现
5.4.2 加法层的实现
5.5 激活函数层的实现
5.5.1 ReLU层
5.5.2 Sigmoid 层
5.6 Affine/Softmax 层的实现
5.6.1 Affine 层
5.6.2 批版本的 Affine 层
5.6.3 Softmax-with-Loss 层
5.7 误差反向传播法的实现
5.7.1 神经网络学习的全貌图
5.7.2 对应误差反向传播法的神经网络的实现
5.7.3 误差反向传播法的梯度确认
5.7.4 使用误差反向传播法的学习
5.8 小结
第 6 章 与学习相关的技巧
6.1 参数的更新
6.1.1 探险家的故事
6.1.2 SGD
6.1.3 SGD 的缺点
6.1.4 Momentum
6.1.5 AdaGrad
6.1.6 Adam
6.1.7 使用哪种更新方法呢
6.1.8 基于 MNIST 数据集的更新方法的比较
6.2 权重的初始值
6.2.1 可以将权重初始值设为 0 吗
6.2.2 隐藏层的激活值的分布
6.2.3 ReLU的权重初始值
6.2.4 基于 MNIST 数据集的权重初始值的比较
6.3 Batch Normalization
6.3.1 Batch Normalization 的算法
6.3.2 Batch Normalization的评估
6.4 正则化
6.4.1 过拟合
6.4.2 权值衰减
6.4.3 Dropout
6.5 超参数的验证
6.5 ............
书籍插图:
以上为书籍内容预览,如需阅读全文内容请下载EPUB源文件,祝您阅读愉快。
书云 Open E-Library » 深度学习入门:基于Python的理论与实现 - (EPUB全文下载)