联邦学习=Federated Learning - (EPUB全文下载)

文件大小:5.99 mb。
文件格式:epub 格式。
书籍内容:

内容简介如何在保证本地训练数据不公开的前提下,实现多个数据拥有者协同训练一个共享的机器学习模型?传统的机器学习方法需要将所有的数据集中到一个地方(例如,数据中心),然后进行机器学习模型的训练。但这种基于集中数据的做法无疑会严重侵害用户隐私和数据安全。如今,世界上越来越多的人开始强烈要求科技公司必须根据用户隐私法律法规妥善地处理用户的数据,欧盟的《通用数据保护条例》是一个很好的例子。在本书中,我们将描述联邦学习(亦称联邦机器学习)如何将分布式机器学习、密码学、基于金融规则的激励机制和博弈论结合起来,以解决分散数据的使用问题。我们会介绍不同种类的面向隐私保护的机器学习解决方案以及技术背景,并描述一些典型的实际问题解决案例。我们还会进一步论述联邦学习将成为下一代机器学习的基础,可以满足技术和社会需求并促进面向安全的人工智能的开发和应用。本书可供计算机科学、人工智能和机器学习专业的学生,以及大数据和人工智能应用程序的开发人员阅读,也可供高等院校的教员、研究机构的研究人员、法律法规制定者和政府监管部门参考。
Original English Language edition published by Morgan & Claypool Publishers.Part of Synthesis Lectures on Artificial Intelligence and Machine Learning.Edited by Ronald Brachman, Francesca Rossi, and Peter Stone.Copyright © 2020 by Morgan & Claypool PublishersAll rights reserved.The Simplified Chinese translation rights arranged through Rightol Media.(本书中文简体版权经由锐拓传媒取得,E-mail:copyright@rightol.com)版权贸易合同登记号 图字:01-2020-0923图书在版编目(CIP)数据联邦学习=Federated Learning/杨强等著.—北京:电子工业出版社,2020.4ISBN 978-7-121-38522-3Ⅰ.①联… Ⅱ.①杨… Ⅲ.①机器学习 Ⅳ.①TP181中国版本图书馆CIP数据核字(2020)第029798号责任编辑:宋亚东印  刷:装  订:出版发行:电子工业出版社     北京市海淀区万寿路173信箱  邮编:100036开  本:720×1000 1/16       印张:13  字数:229千字版  次:2020年4月第1版印  次:2020年4月第1次印刷定  价:89.00元凡所购买电子工业出版社图书有缺损问题,请向购买书店调换。若书店售缺,请与本社发行部联系,联系及邮购电话:(010)88254888,88258888。质量投诉请发邮件至zlts@phei.com.cn,盗版侵权举报请发邮件至dbqq@phei.com.cn。本书咨询联系方式:010-51260888-819,faq@phei.com.cn。
序言人工智能安全21世纪初,人工智能(Artificial Intelligence,AI)进入以深度学习为主导的大数据时代,基于大数据的机器学习既推动了AI的蓬勃发展,也带来一系列安全隐患。这些隐患来源于深度学习本身的学习机制,无论是在它的模型建造(训练)阶段,还是在模型推理和使用阶段。这些安全隐患如果被有意或无意地滥用,后果将十分严重。当前AI安全已引起人们普遍的关注,各项的治理措施也因此积极开展。AI治理有以下几个不同的维度,即技术、法律、经济和文化等。“联邦学习”(Federated Learning)正是在这个背景下提出和发展起来的,它主要从技术维度出发,重点研究其中的隐私保护和数据安全问题。那么联邦学习是如何保护隐私和数据安全的?它包括两个过程,分别是模型训练和模型推理。在模型训练阶段,模型相关的信息可以在各方之间交换,但数据不能交换,因此各个站点上的数据将受到保护。在模型推理阶段,训练好的联邦学习模型可以置于联邦学习系统的各参与方,也可以供多方共享。这是联邦学习的具体过程,也就是它的定义。本书是关于联邦学习的介绍,共11章,内容丰富。从广度上看,书中讨论了四种联邦学习的基本类型,即横向联邦学习、纵向联邦学习、联邦迁移学习和联邦强化学习,还讨论了相关的联邦学习激励机制和分布式机器学习。从深度上看,书中包括原理、算法、平台和应用实例。本书作者杨强等均来自微众银行,他们都参与了联邦智能使能器(Federated AI Technology Enabler,FATE)的联邦学习平台的开发。本书的许多思想来源于这个实践,因此具有实用性。本书可以作为计算机科学、人工智能和机器学习专业的学生,以及大数据和人工智能应用程序开发人员的入门参考书,也可供本科高年级学生或者研究生、大学的教员和研究机构的研究人员阅读。张钹中国科学院院士,清华大学人工智能研究院院长
前言本书讲述在数据间彼此孤立、同时被不同组织所拥有且并不能被轻易地聚合在一起的环境下,联合构建机器学习模型的方法。我们经常可以听到,当今是大数据(Big Data)时代,而大数据正是人工智能(Artificial Intelligence,AI)应用蓬勃发展的“燃料”。事实却是,我们面对的数据常常既是小规模,又是碎片化的。例如,我们不能随意收集由移动终端设备产生的数据,这些数据都以碎片化的形式分散存在。像医院这样的机构,由于行业的特殊性,对用户数据的掌握量往往是有限的。然而,由于用户隐私和数据安全方面的需求,使得在不同机构间以简单的方式将所有数据聚合到一处并进行处理变得越来越不可行。在这样的环境中,联邦机器学习(Federated Machine Learning),或者简称为联邦学习(Federated Learning),作为一种行之有效 ............

书籍插图:
书籍《联邦学习=Federated Learning》 - 插图1
书籍《联邦学习=Federated Learning》 - 插图2

以上为书籍内容预览,如需阅读全文内容请下载EPUB源文件,祝您阅读愉快。

版权声明:书云(openelib.org)是世界上最大的在线非盈利图书馆之一,致力于让每个人都能便捷地了解我们的文明。我们尊重著作者的知识产权,如您认为书云侵犯了您的合法权益,请参考版权保护声明,通过邮件openelib@outlook.com联系我们,我们将及时处理您的合理请求。 数研咨询 流芳阁 研报之家 AI应用导航 研报之家
书云 Open E-Library » 联邦学习=Federated Learning - (EPUB全文下载)